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A new approach based on variational principles is proposed. It enables one to determine the dynamic 

displacements of a spherical shell with an arbitrary contour on the basis of the solution of the problem 

for a circular shape [l]. The use of this approach, in conjunction with the small-parameter method [2], 

considerably increases the accuracy when estimating the stress distribution. When a point source, 

which satisfies the Sommerfeld radiation condition, is far away, the solution is extended to the case of 

the diffraction of spherical waves by a cylindrical cavity reinforced with a soldered on, stiff shell. 

1. THE DIFFRACTION OF SPHERICAL WAVES BY THE CYLINDRICAL CAVITY OF 
CIRCULAR PROFILE 

WE WILL seek a solution of the equation of motion for the case of an isotropic elastic body 
using the scalar potential Q, and the vector potential v which are connected to the 
displacements by the Helmholtz relationship [3]. 

Let us introduce a cylindrical system of coordinates, with the z axis directed along the axis of 
the cylindrical cavity, and let us represent the equation of motion 
the form 

in terms of the potentials in 
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where cp is the scalar potential, vi are the projections of the vector potential on to the 
coordinate axes, and C, and C, are the longitudinal and transverse velocities of wave 
propagation. 

We will represent the incident wave in a plane normal to the axis of the cavity. The wave has 
a rectilinear front and varies along the z axis in a known way. Neglecting the component of the 
mechanical action along the axis of the cavity, we take the scalar potential of the incident wave, 
which satisfies these conditions and Eq. (l.l), in the form 

cp= ._ o cp~Ti”I,(m) cos f exp [- i(Kz t wt)] 

cr=~23?, e=rl(fl -x), (1.2) 

The longitudinal potential q* and the transverse potential v” of the reflected waves are 
specified by the series 
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(1.3) 

where q0 is the maximum amplitude of the dynamic action, 1, and H,, are Bessel and Hankel 
functions, A, and B, are constant coefficients, determined from the boundary conditions, u 
and w are wave numbers, defined by the relationships u = o/C, and w = w/C,, o is the angular 
frequency, K is a separation constant, x is the angle between the direction of propagation of the 
longitudinal wave and the vertical axis coinciding with the origin from which the angle 8 is 
measured, and y = 1 when n > 0 and y = 0.5 when n = 0. 

In order to estimate the stress-strain state of the medium in the spatial formulation, we will 
adopt the condition that the radiation source is sufficiently far removed from the cavity and 
consider the scalar potential (p and the projection of the potential y on to the z-axis. As in the 
planar formulation of the problem, we put the projections of the vector potential on to the 
other axes equal to zero in view of their negligible effect. This follows from the general 
solution of the system of differential equations in a spatial elastic body by the small- 
perturbation method, according to which this effect is determined by the solution of the zeroth 
approximation, which does not take into account terms with small values of the coefficients 
and the perturbations in the solution, which is determined using a known method when the 
corresponding terms are taken into account. 

Since, in the case of the above-mentioned projections of the vector potential, the zeroth 
solution corresponds to a plane wave and is equal to zero, the perturbations for them are also 
equal to zero. We shall therefore only consider perturbations for those potentials which also 
had solutions in the case of the planar formulation of the problem. 

The stresses in the body when a wave is reflected by the cylindrical cavity are determined by 
the sum of the potentials of the incident wave (1.2) and the reflected wave (1.3). Calculating 
them using a well-known technique, we determine the components of the stressed state in the 
r0 plane 
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Here A and p are Lame constants. The coefficients A, and B,, in expressions (1.4) are 
determined from the boundary conditions on the circular contour of the cavity, while the 
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separation constant K is determined from an approximation of the spherical wave front which 
satisfies the Sommerfeld radiation condition [4] along the cavity 

where S is the distance from the point source to the cavity and tp’ is the maximum pressure in 
the wave front. 

2. THE DIFFRACTION OF SPHERICAL WAVES BY A CYLINDRICAL CAVITY 
WITH A NON-CIRCULAR CONTOUR 

Let us represent the contour of the cavity in the form 

&=oa 

r=rot 22 
&z-m 

Sk exp (iki?) (2.1) 

Here r, is the reduced radius of the contour of the cut-out and S, is the amplitude of the 
deviation of the contour of the k-harmonic in the Fourier expansion from a circular shape. 
When the deviations in the contour from a circular shape are insign~icant, the solution of the 
problem may be reduced to a polar-symmetric problem using the small-parameter method [2]. 
The problem is solved by linearizing the stress distribution within the limits of the deviation of 
the contour from a circular shape, transfer of the boundary conditions on to the circular 
contour, and is represented in the form of the stresses of the zeroth approximation cr(‘) and, 
also, the perturbations in the stresses o Q) due to the deviations in the contour from a circular 
shape. These stresses have been presented for the condition of plane deformation [S], but can 
also be used to describe the stressed state of any section normal to the axis of a cavity in the 
diffraction of spherical waves. In this case, the boundary conditions take the form 
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3. REINFORCEMENT OF THE CUT-OUT WITH A STIFF RING 

When there is close contact between the stiff ring and the plate, we obtain the solution by 
reducing the contact problem of the interaction of two media with different mechanical 
characteristics to a homogeneous problem by an equivalent change in the ring parameters. 
however, the use of the small-parameter method in order to change to polar-symmetric 
boundaries is confined to the case when there are insignificant deviations in the contour of the 
opening from a circular shape. 

In order to remove this constraint, we propose to use the principle of an equivalent change 
in the rigidity and load on changing from a non-circular ring to a circular ring [l] using the 
Ritz-Timoshenko approach, and also to make use of the condition that the minima of the 
potential energies of the systems are fairly close in the case of non-circular and circular rings 
when the contour only slightly deviates from a circular shape. 

Taking account of the fact that, by the variational principle, the true displacements must 
correspond to minimum potential energy, we determine them for a non-circular ring from the 
solution for a circular ring subject to the condition that their energies are equal. 

Let us consider the potential energy of a non-circular ring with coordinates defined by 
expression (2.1) in an arbitrary interval 0, c 8 < O,, in the form 

2R;p= d0* 
tu)* -p d; -qU](RIJ + 2: Sk exp (ik0)) JO (3.1) 
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and, also, that for a circular ring with a radius of the median line, & 
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The subscript r refers to the case of a ring, and the subscript c refers to the case of a circular 
ring. 

When k&42,, and small quantities are neglected, we establish the condition for the 
equivalent transition to a circular ring due to a change in the external load 

and the stiffness of the ring at each of its points 

k=m 

T= 
k2S2 

k=!, [(2k* -l)2o exp(iktl)----& exp (2ikO)] 

(3.3) 

(3.4) 

Here p and q are the radial and tangential components of the external load acting on the 
ring, EIZ is the stiffness of the non-circular ring, p is its radius of curvature, and U are the 
tangential displacements. 

Let us consider the solution of the contact problem in the case of a uniform component of 
the loading. We obtain the zeroth-approximation stresses in the medium in the case of circular 
ring contours and non-circular cut-out contours taking into account St Venant’s principle of 
continuity. For this purpose, we will consider a ring with a modulus of elasticity which is the 
same as that of the medium due to a change in its thickness, when constancy of the stiffness 
under uniaxial loading is maintained, and let us also compensate for the gap in the cavity 
contour due to the change in the internal boundary of the ring. The coordinates of the internal 
contour of the ring are then determined from the expression 
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Here r, and r, are the internal and external reduced radii of the ring, E, is its modulus of 
elasticity, and E is the modulus of elasticity of the body. 

Under uniform loading, we determine the stresses in the zeroth approximation and for the 
perturbations using the expressions in [S], on imposing boundary conditions (2.2) taking 
account of (3.5). 

We obtain the solution of the contact problem in the case of a non-uniform load by changing 
to a homogeneous medium by means of an equivalent change in the ring parameters, when its 
rigidity remains unchanged under different loading conditions, and by compensating for the 
gap in the cavity contour. In this case, we determine the stresses in the zeroth approximation 
using expressions (1.4) when the value of the reduced radius of the internal circular contour is 

r=r2 -(rz -rl)(E,./E)‘13 (3.6) 

We then find the expressions in the stresses subject to boundary conditions (2.2) using the 
expressions in [l] for the deviations of the contour governed by the dependence 
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Here, IV= (E,lE)“’ in the case of boundary conditions (2.2) which are non-uniform in a 
circumferential direction and W = E, / E in the case of uniform boundary conditions. 

We obtain the stress distribution in a real ring by solving the force equilibrium differential 
equation for a circular ring in the quasistatic formulation when the stress distribution on its 
external surface is established taking account of the changes in the stresses using expression 
(3.3) and, in the case of variable stiffness of the ring (3.4), using the expressions in [l]. 

4. RESULTS OF THE INVESTIGATIONS 

Let us estimate the effect of the closeness of a finite source which radiates spherical waves 
with frequency w= 400 rad/s into a cylindrical cavity with radius r, =l.O m, located in a 
medium with modulus of elasticity E = 2.4 x 10’ MPa and Poisson’s ratio equal to 0.2. 

In order to establish the parameters for an approximation of the incident wave (1.2) which 
satisfies the Sommerfeld radiation condition (1.5) we expand expressions (1.2) and (1.5) in 
Taylor’s series with respect to the variable z and consider only those terms which turn out to 
have a substantial effect. Then, on maintaining the condition K2-% w2/Ct and, also the 
constraints LS4 1 and LKG 2, we obtain 

K=[6- 12.(; - 
L4W2 L2 ?4?4 

144 s*c: 
+s) 1 /L (4.1) 

Here, S is the smallest distance from the point source to the cylindrical cavity. 
We determine the length of the cavity L, over which the boundary conditions are satisfied, 

taking account of the fact that there is no boundary effect in the initial section z = 0. Then, on 
solely taking account of the cosine expansion along the z-axis in expression (1.2) and 
considering a section of the cavity in the range -7r/2K c 8 < n/2K, we establish that the length 
is equal to 13 m (Fig. 1). The dependence of the stress concentration f on the length of the 
cavity L over which the approximation of the external action is made is represented by the 
solid line. 
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The estimate of the effect of the closeness of the source of radiation of waves into a 
cylindrical cavity is shown for the initial data which have been adopted and the dependence off 
in the most loaded sections, 0 = &a/2, on the remoteness of the source S (the dashed line) has 
been established. 

The solution of the problem of the diffraction of spherical waves by a cylindrical cavity, 
which has been presented above, enables one to evaluate the stress-strain state over a wide 
range of distances of the point source and to establish the limits of applicability of the plane 
solution. 

The proposed method of reducing contact problems of the concentration of stresses in 
cylindrical cavities with non-circular contours to polar-symmetric boundary conditions by an 
equivalent change in the stiffness of the shell and its loading parameters is not subject to 
rigorous constraints regarding the magnitudes of the deviations of the shell contour from a 
circular shape and, moreover, on their derivatives, as in Pal’mov’s small-parameter method. 
This approach is quite compatible with the sill-parameter method 121 and, which is the prime 
consideration, the error in estimating the state of stress of a body using the small-parameter 
method will be reduced by compensating for the deviation of the contour due to the non- 
uniform stiffness of the equivalent circular ring when the two methods are used. Hence, we 
may expect fairly good accuracy and reliability for the proposed approach to solving problems 
of the concentration of stresses in cylindrical cavities with soldered on shells. 
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